
The Challenge of URL-based Phishing Detection
Using In-The-Wild Data

Shai Cohen
Ben Gurion University

shco@post.bgu.ac.il

Jeremy Chew
Singapore University of Technology and Design

jeremy chew@mymail.sutd.edu.sg

Dvir Cohen
Ben Gurion University
dvircohe@post.bgu.ac.il

Asaf Shabtai
Ben Gurion University

shabtaia@bgu.ac.il

Abstract—Phishing scams constitute one of the most common
cybercrimes that are being committed on the Internet. As such,
there is a need to proactively detect such phishing threats. While
there have been several competitive work done on this very issue,
most of them do not stand up to the glut of URLs that occur under
real-world conditions. In this paper, we put the validity of many
competitive models on doubt. By implementing and evaluating
these models on data meant to simulate “real-world” conditions,
we show that even though these models are able to achieve
high performances on their tested data sets, they are unable to
generalise well and achieve the same performance on “in the
wild” data. We also propose a solution that specifically targets
this issue. By using an auto-encoder trained on unlabelled URLs,
we show that combining it with a classification model not only
achieves competitive performance under testing conditions, but
outperforms other models when evaluated against “real-world”
data sets.

I. INTRODUCTION

Phishing URLs are used to mislead users and redirect
them into malicious websites, where attackers can obtain
sensitive information (e.g., usernames, passwords, credit card
details, email address, etc.), or install malicious software on
the users’ devices. Although phishing URLs are well-known
cyber-threats, many still fall prey to these scams. A report
published by the FBI [13] indicates that “Phishing, Vishing,
Smishing, and Pharming” attacks have had the most victims
across all other internet crimes in 2019 alone. Another report
published by the Anti Phishing Working Group (APWG) [3]
indicates that phishing attacks rose in the third quarter of 2019
to a new high since 2016.

As phishing URLs are a major risk on the Internet, there
have been much work done to identify and mitigate their
risks [9], [20], [29], [27], [16], [26]. One common approach
to is to create a database of black/white-listed URLs and
block/approve incoming URL requests accordingly [20], [9].
However, this approach is limited. Blocking only black-listed
URLs makes it still susceptible to zero-day attacks, and
allowing access to only white-listed URLs could be unfair
to legitimate websites, as it would not allow unpopular, yet
benign, non-white-listed URLs to pass. In addition, a report
from the APWG showed that the up-time of phishing pages is
less than two days, thus relying on a list of a malicious domains
may be flawed as the domains would become irrelevant after
only a short while.

Another approach is to learn the defining characteristics
of malicious/benign URLs and build an algorithm that, given
a new URL, will determine if it is a phishing site. Such an

approach is often implemented through the use of Machine
Learning (ML) algorithms [29], [27], [26], [16]. That is, given
a corpus of labelled data which contains both phishing and
benign URLs, a ML algorithm tries to learn the characteristics
of each group and, classify new URLs into the most similar
group.

In this regard, several methods have been suggested that
use only the raw URL string without collecting any additional
information from the website. The information extracted are
known as lexical features, and research has shown that algo-
rithms based on only these types of features remain competi-
tive compared to approaches that uses additional information
gained from the website [8]. These methods are also much
faster than other approaches, as there is no need to rely on
network access and third-party services.

However, these methods share one major problem. Al-
though these methods work well on the tested data sets, this
is not the case for ”in the wild” data. The test data sets are
far from reflecting the ”real world” environment. Most of these
studies use the Alexa 1M data set as a source for benign URLs
and Phishtank as a source for phishing URLs. However, these
data sets include URLs that are either “very benign” or “very
malicious”, and hence the model does not learn how to deal
with URLs that are not explicitly malicious nor benign. In
addition, Phishtank contains duplicated domain names, which
are not filtered out in most cases. Additionally, some of the
published data sets contains a variety of problems that make it
easy for the model to distinguish between phishing and benign
URLs. For example, malicious URLs could always contain the
URL’s path, while benign URLs would never contain the path.
Some of the research works also use very small data sets,
which would cause inherent biases in the model and disallow
it from generalising to other data.

Another common issue we found is that these models are
often trained and executed only on URLs that contain the
path. However, in several common scenarios listed below, this
information is not present in the analyzed URL. (1) Encrypted
path - According to APWG [4], almost three-quarters of
phishing sites used the HTTPS protocol. Under this protocol,
the path is encrypted and can not be analysed using man-in-the-
middle entities, thus rendering it impossible for networking-
analysis tools to detect phishing URLs using the suggested
methods which require the path. (2) Data without path - Some
data sets, for example, CertStream data, do not contain the
path. However, these data still needs to be analyzed in order to
protect against phishing attempts, which the methods that have
been suggested thus far are unable to do so properly. To the



best of our knowledge, there is no study that suggests a method
to classify phishing URLs when the path is not included. As
such, in many cases, there is a gap between the suggested
methods’ assumptions and “real world” conditions.

In our study, we will put the performance of those sug-
gested models on doubt. We will show that although there are
many studies that claim that their method can successfully
classify phishing URLs using only the URL, this is not
completely true in a “real world” setup. This will be done
by implementing state-of-the-art methods and then evaluating
them on data specifically meant to simulate “in the wild” data.

We will also propose a new solution that specifically targets
this issue. By first training an auto-encoder to learn a reduced
representation of a URL, we show that our proposed model
performs much better than other competitive models on “real
world” data.

The remainder of this paper is organized as follows: First
we will review the state-of-the-art methods used for phishing-
URL classification, including the architectures and data sets
used. Then, we will implement some of these methods and
compare their results on several published data sets. Next,
we will evaluate these trained models on “in the wild” data
and show that they are unable to perform such classifications
accurately. We then introduce our solution in detail, providing
the experimental results of our solution (obtained from both
published data sets as well as “in the wild” data), as well
as comparing them to those of the previously implemented
and tested models. Finally, the last section summarizes and
concludes the paper.

II. RELATED WORKS

We split our literature review into two main parts. Firstly,
we review state-of-the-art methods that have been suggested
over the years to solve the phishing classification problem.
Secondly, we review studies that describe the most used data
sets. This is to gain a deeper understanding of the problems
present within these data sets.

A. Phishing Classification

There have been many approaches and methods suggested
to detect phishing URLs. These can be divided into three
main categories as follows: (1) Black/White-list methods,
(2) Additional-data extraction methods, and (3) URL-based
methods. This review focuses on the third approach as it is
the most relevant for our research. In addition, we will present
methods that are either the most cited, the most recent, or
evaluated against a large scale data set since we think those
are the most relevant to our study.

1) Black/White-list methods: In this category, the goal is to
produce a database containing as many examples of malicious
and benign URLs as possible, and then use those as a check
to classify new URLs.

One of the most popular research in the blacklisting
domain is PhishNet [20]. The authors applied five different
augmentation methods on known phishing URLs in order to
create new possibly-malicious URLs. This included replacing
the URL’s top-level-domain, replacing brand names, etc. Then,

the resulting URL are validated, checked, and added to the
blacklist accordingly.

Cao et al. presents a white-list-based method as well [9].
In their paper, the authors used a Naive Bayesian classifier to
maintain a white-list based on the user’s browsing habits. If
a user enters his credentials in some non-white-listed site, he
will be alerted and made known of possible phishing attempts.

2) Additional-data extraction methods: The next two meth-
ods are similar as they use features extracted from the URL and
website in order to augment the classification model. However,
this method differs from the next as it does not just rely on the
raw URL string to collect data about the website. For example,
it may choose to take a snapshot of a web page, and then, by
analyzing the URL with this additional information, classify
the suspect URL as phishing or benign. The main disadvantage
of methods belonging in this category is that they are time-
consuming, since connecting to the Internet often results in
communication delays to and from the host site. Furthermore,
some of the features obtained from this additional data may
be computationally expensive to extract and use as well.

One of the most cited methods in this category is
CANTINA [29]. This method analyzes the HTML web page
corresponding to a URL to extract features for a linear classi-
fier. Firstly, term frequency–inverse document frequency (TF-
IDF) is calculated on the text present in the web page to find
terms that are deemed the most important in the text. The top
five most important terms, along with the domain name, are fed
to Google’s search engine and the results are collected. Other
features are also collected, such as the age of the domain,
number of dots in the URL, etc.

In a later paper, the authors also present CANTINA+, an
improved, two-staged method to detect phishing URLs [27].
In the first stage, two filters are applied on the HTML web
page. The first filter applies SHA1 hash function on the web
page and compares it to a pool of values of known phishing
web pages. The second filter looks for login forms on the web
page. If the hash-based filter returns no matches but the login
form filter detects a form, the algorithm moves to its second
stage. In this stage, a Bayesian Network model is employed
on features from CANTINA as well as new ones in order to
perform the classification.

Li et al. also presents one of the more recent methods for
detect phishing using HTML web page features [16]. They
extract features such as IP address, presence of suspicious sym-
bols, number of external links, Word2Vec string embeddings,
etc. from both the URL string as well as the HTML web page.
These features are then passed into a stacked model containing
variations of decision trees in order to classify the URL as
phishing or benign.

3) URL-based methods: Unlike the previous method, URL-
based methods only extract features present within the raw
URL string itself. This makes them a lot more efficient
and faster than the previous approach as they do not suffer
from networking delays or require specific tools to execute.
Additionally, these methods do not sacrifice accuracy for the
sake of performance. Some researchers have claimed that
URL-based models are able to obtain the results comparable
to methods that rely on extracting additional information from
the website [26].



Paper Phishing Data set Benign Data set
Num. of records
(benign\malicious)

Download
Link

[29] PhishTank Alexa and Yahoo! 100\100

[27] PhishTank Alexa, 3Sharp and Yahoo! 4,740\8,000

[16] PhishTank Alexa 28,320\24,789

[22] PhishTank Yandex 36,400\37,175 1

[21] PhishTank Common-Crawl, Alexa and Yandex - 2

[26] PhishTank Alexa 245,023\245,385

[23] VirusTotal VirusTotal 16,930,453\2,137,426

[5] PhishTank CommonCrawl 1,000,000\1,000,000

[17] PhishTank CommonCrawl 10,604\10,604

[28] PhishTank and Reasnable Antiphishing Alexa and Technical challenge 584,909\573,964 34

[2] 420K-PD 420K-PD 344,821\75,643 ??
[11] PhishTank and OpenPhish Alexa and CommonCrawl 5,000\5,000 5

[24] PhishTank. Huawaei Digital and APWG Alexa, DMOZ and private dataset 59,547\55,857

[19] DMOZ repository DMOZ 5,000\5,000

[8] UAB Phishing Data Mine Cyveillance 18,990\9,506

[1] PhishTank Millersmiles -

Some shallow learning methods have been suggested thus
far. Rao et al. compares several learning models, including
XGBoost, Random Forest (RF), Logistic Regression (LR), k-
Nearest-Neighbors (kNN), Support Vector Machines (SVM)
and Decision Trees [21]. The features that have been extracted
for the models include TF-IDF features, as well as structural
features such as the length of the domain, the number of
underscores in the host name, etc. Among them, RFs obtain
the best results.

Random Forests have also been compared against other
models in [22] and obtains similarly better results. In the
paper above, two modules, a “word-decomposer” module and
a random-word-detection module, are applied on the URL
to recognize words and random characters present within
the string. Other features are also extracted from the URL,
including the average length of the recognized words, the
number of random words, etc.

Compared to shallow learning models, deep learning mod-
els have achieved similar or better results in many different
scenarios. The task of classifying between phishing and benign
URLs is no different, and there have been many papers that
propose several different deep learning architectures to solve
this classification problem, often with improved results. These
architectures usually begin by encoding the URL characters
to some vector, for example using one-hot encoding, or other
embedding techniques such as word2vec, bags of characters,
etc. These vectors are then passed as inputs to the deep learning
network for classification. A systematic literature review of the
deep learning methods is presented in [7]. We review several
examples of deep learning models below.

In [26] the authors present PDRCNN, a deep neural net-
work architecture based on Bi-Directional Long-Short Term
Memory (LSTM) units and 1-Dimensional Convolutional Neu-
ral Networks (1D-CNNs). A URL is first processed and
embedded using word2vec to transform it into a 64-long vector.
Nine other structural features are extracted from the URL, and
concatenated with the URL vector as inputs to the network. It
is shown that these nine structural features have no influence
on the performance of the network. Furthermore, synchronous
tests were also performed to show the robustness of the model.
Additionally, it is noted that even without the URL vector, the

nine structural features are shown to give better results than
shallow learning models like RFs.

Another example of a deep neural network is presented
in [23]. In this work, the authors build a network using
an embedding layer, 1D-CNNs, and several fully connected
layers, which represents a larger and deeper network compared
to others in the field. The authors compare their model with
two baseline models. The first baseline model uses 1-5 sized
n-grams while the second one extracts structural features from
the URL including URL length, number of dots, etc. These
features are then passed to a hash function to create a 1024-
length vector that will be used as inputs to the network. In
either case, the main model that the author presents outper-
forms either of the two baselines.

In [5] the authors propose a neural network consisting
of LSTMs and fully connected layers in order to classify
phishing URLs. Their model is compared to RFs using a 3-
fold cross validation technique and obtains better performances
(i.e., AUC, Accuracy, Recall, Precision and F1 score).

In [17] the authors propose a model based on a 1D-CNN
and compared it to the LSTM-based model proposed in [5].
It is shown that the 1D-CNN-based model outperforms the
LSTM model.

Another model has been proposed where a URL is em-
bedded by averaging character embedding values [28]. These
embedding values are firstly obtained using techniques such as
SkipGram and are applied on the raw URL string. XGBoost
is then applied on the resultant vector in order to classify the
URL.

B. Data Sets

In this section, we will review some common data sets used
across various research works, and identify several problems
present within these data sources.

Alexa 1M is a list collected by Amazon that ranks the most
popular sites on the Internet. As it is unlikely that the top-
ranked sites would be malicious, this data set if often used as
a source for benign URLs. However, there are other rankings
which are an improvement over Alexa’s. [18] compared four



different rank lists (Alexa 1M, Cisco Umbrella, Majestic, and
Quantcast) in the contexts of: (1) similarity - how many URLs
are common across different rank lists, (2) stability - how often
the ranks of each URL changes, (3) representation - to what
extent does the rating reflect the level of traffic the URL’s
network receives, (4) responsiveness - is there a response from
the URL, and (5) benignity - how many malicious domains in
the list. The authors found that each of the four rank lists
that they compared were very different from each other. In
particular, Alexa’s rankings are not stable and changes a lot
from day to day. This suggests that Alexa’s ranking relies on
a limited view of Internet activity, and can be easily exploited
by injecting false data into the ranking. As an example, tk
They have found that these four ranks are very different from
each other. Alexa’s ranking is not stable and changes a lot
between different days. This means that Alexa ranking relies
on a limited view of the Internet. They showed that Alexa can
be easily exploited by injecting false data into the ranking.
As an example of such an attack, the authors of [14] show the
feasibility of infiltrating domains into Alex’a top 100k domains
with little effort. This suggests that using Alexa as a source for
benign URLs may not be entirely accurate without additional
verification.

Phishtank, a website where users can report phishing
URLs, contains a large amount of malicious URLs dating back
from 2009. As such, it is often used a data source examples of
phishing URLs. However, this may not be the most updated
list of phishing URLs. [6] compared three phishing blacklists
(Google Safe Browsing, OpenPhish, and PhishTank) and found
that Google’s Safe Browsing blacklist was updated 17 times
more than PhishTank and OpenPhish, implying that PhishTank
may not contain as many updated and still-in-use phishing
URLs as initially presented.

Some research works use data sources that are self-collated
and edited and as such, it can be difficult to properly compare
the suggested methods and results accordingly. A public, bal-
anced data set is proposed in [10] for benchmarking purposes.
However, this data set is limited in the fact that it only contains
30,000 URLs, and is relatively small for much work to be done
on it.

III. BACKGROUND

A URL (or Uniform Resource Locator) is a human-
readable text that describes the location of a desired web
page/file on the Internet. In general, the URL has three main
parts, presented also in Fig 1.

Fig. 1. URL Structure

The first part represents the protocol used, usually either
HTTP or HTTPS. The second part is the hostname, which
is composed of the top-level domain (TLD), the domain,
and, optionally, sub-domains. The hostname describes the site
name, resolved by the DNS server from the IP address of the

TABLE I. OBFUSCATION TYPES.

Obfuscation type Example
Benign url legit.legitimatesite.com

Interchanging legitimatesite.legit.com

Top-level domain legit.legitimatesite.com.my

Character substitution legit.iegitimatesite.com

Add subdomain legit.legitimatesite.anothersite.com

server that holds the web page or file. The last part of the URL
is the path, which describes the location of the web page/file
on the host server.

Phishing is a well-known fraudulent method aiming to
impersonate a legitimate URL through social engineering.
An attacker sends a message through email, social networks,
etc., which contains, amongst other things, a malicious URL
which mimics a benign one. Unsuspecting users that click
on this malicious URL would be routed to a harmful web
page or file, where attackers can perform cyber-attacks such
as stealing login credentials, or exploiting vulnerabilities to
install malicious software on the users’ devices [12].

In some cases, the hostname may be a benign entity but
the path may be malicious. This is mainly done by cross-site
scripting (XSS) attacks. In these cases, attackers try to inject a
malicious file into the benign URL. As an example, consider
the following scenario: sites.google.com/site/informationfb560
03/. While sites.google.com is a benign website, the attacker is
using the website to host and have victims download malicious
files.

In many other cases, phishing occurs in the hostname.
In order to mimic a benign URL, phishing URLs disguise
themselves similarly to the original URL as much as possible.
This is usually achieved using URL obfuscation. Several types
of URL obfuscation methods are described in Table I.

A. HTTPS Protocol

With the development of the Internet, and the need for
better and more secure protocols, there is a growing use of the
Hypertext Transfer Protocol Secure (HTTPS) protocol.

HTTPS is similar to the unsecure HTTP protocol, except
that almost all network traffic is encrypted under HTTPS. The
only parts that are left exposed are the destination address
and destination port, which is required by the networking
components for successful routing of the packet to its desired
destination. Other parts of the packet, such as the URL’s path,
are not needed for successful routing, thus HTTPS encrypts
that as well.

Using HTTPS as a characteristic for the differentiation
between benign and malicious URLs had some use in the
past, since malicious URLs could not obtain the necessary
certifications to use the HTTPS protocol. However, this is no
longer the case. Today, more and more attackers are using
the HTTPS protocol for their websites, and the APWG has
reported that almost three-quarters of phishing URLs now use
HTTPS [4]. This means that HTTPS is no longer a good
defining characteristic of benign versus malicious URLs.



B. Special Data Sources

In many scenarios, there is a need for a model that is able
to generalise on any type of URLs, including those with and
without the path. For example, CertStream is a data source
that contains URLs that should be analyzed, in order for early
detection of phishing sites. CertStream gives real-time updates
of URLs whenever they apply and obtain a new security
certificate. As mentioned earlier, since more and more phishing
sites tend to use the HTTPS protocol, they would also appear
in this data source, and hence there is a need to detect such
entries as they appear. However, in this scenario, these URLs
do not contain the path since the certificate is mainly for the
domain alone is not path-specific.

To the best of our knowledge, there is no current research
that evaluates the performance of phishing-classification mod-
els on URLs where the path is not included. As such, this
represents an open gap in the research of phishing detection.

C. NLP Methods

Natural language processing (NLP) is a sub-field in com-
puter science, dealing with how a computer can process natural
language. As URLs consist of sequences of characters usually
organized in a linguistic form, a lot of recent phishing detection
models use NLP techniques in order to analyze the linguistic
characteristics of the URL. In many cases, phishing URLs tend
to have certain linguistic characteristics that differentiates them
from benign URLs. Hence, using NLP methods appears to
be a straightforward way to extract information about such
characteristics, and this is shown to perform relatively well on
tested data.

In this subsection, we present some of the key principles
and methods used in the NLP domain.

The first principle is the encoding of the alpha-numeric
characters to something that is machine-usable. An obvious
solution, using the ASCII values of characters as inputs, is not
feasible as it there is no correlation between different ASCII
values and the roles of each character in a sentence. One of the
common ways to “solve” this issue is to use one-hot encoding,
which converts every character to a vector that is as long as
the size of the whole alphabet. This vector has a value of
one in one place, corresponding to the actual character, and
zeroes in the rest, so each unique character has a unique vector
representation. Using this approach ensures that there is no
inherent correlation between ASCII values and removes any
bias that might form.

A more sophisticated method to represent characters is to
use an embedding layer. In order to build this representation, a
sequence is first represented as a sequence of one-hot-encoded
vectors or numerical labels, and then passed to a specialised
neural network that seeks to drastically reduce the input
dimensions to a more usable number. The final representation
is a non-human-readable nor machine-decodable vector, but it
benefits from being able to be used as inputs to various neural
networks. There are some ready-made embedding representa-
tions, such as word2vec, bags of words, etc.

LSTMs are a well-known deep learning module that is
often used for NLP purposes. Based on Recurrent Neural
Networks (RNNs), LSTMs improve upon the RNN’s inability

to detect long term sequential dependencies and are suited for
use on sequential data. Bi-directional LSTMs consist of two
LSTM cells where the both the input sequence and its reverse
are used to train the model. This allows the model to better
learn sequential dependencies and additional context present
within the input.

CNNs are also used very often in NLP models. Although
it originally saw much use in the computer vision domain,
it is also used to great effect in the NLP domain. Often,
while computer vision makes use of 2-dimensional (or even
higher) CNNs that pass over the 2D image, CNNs used in
NLP are often 1-dimensional networks that pass over the one-
dimensional sequence of characters. One-dimensional filters
with varying sizes are applied on the input sequence, in the
hopes that the network will be able to learn and recognise
sequential patterns.

Last but not least, fully connected layers are layers of
neurons that connect every input node to every output node.
These layers are often not too useful on their own, but are
often combined with LSTM or CNN cells to allow the model
to reach a decision on the classification.

D. “In The Wild” Data

“In The Wild” data refers to data that are usually not found
in common data sets such as Alexa 1M or PhishTank, and
is meant to be a term that represents data that occurs under
“real world” conditions. A lot of research makes claim to
significant classification results on their individual tested data
sets, but this may not be true on “in the wild” data. These test
data sets are limited in varied ways, which would affect the
models’ performances when they are used on non-controlled,
“real-world” data. In this section, we go through some of the
limitations of these data sets.

1) Data sources: Many research works use the Alexa
1M data set as a source for benign URLs. However, Alexa
mostly contains URLs which are short and simple with few
subdomains. Hence, this is a very specific data source which
only describes a subset of all benign Internet traffic. Models
trained using this data set often recognise long URLs as
phishing attempts, but in many cases, such a characteristic
does not necessarily equate to a malicious attack. These long
and complex benign URLs are more common than similar
phishing URLs, so training a model with a balanced data set
that contains both types of URL is likely to cause high false
positive rates under “real-world” conditions.

PhishTank is another popular data source, but for phishing
or malicious URLs instead, Although it is undoubtedly a large
data set that contains a wide variety of phishing URLs, in many
cases, some of these URLs have the same or similar domain
names. Studies that fail to notice this issue, and do not choose
to pre-process and clean the data set beforehand, may result in
data leaking from the training set to the test set, which induces
biases in the trained model.

2) Artificial differences: In some cases, we found differ-
ences between benign and phishing URLs which are artificial
and do not arise as a result from the sequence of characters
within the URL itself. The following are some examples of
these artificial differences: (1) Benign URLs do not contain



the path, while phishing URLs do. (2) URLs which use the
HTTPS protocol are more likely to be benign than phishing
(which is not too true these days as explained above). These
artificial differences do not translate well into “real world”
conditions, hence models which learn these differences (either
purposefully or as a result of pattern-learning) will not work
as well on “in the wild” data.

3) Small data sets: Some research, especially the older
ones, use relatively smaller data sets that are easily fitted.
These data sets are likely to cause inherent biases to appear
within the trained model, due to size of the data. However, “in
the wild” data may contain a larger variety of URLs that are
not present at all in the training and testing data set. In this
case, the results of testing using the smaller test data sets are
not transferable to “real world” data.

4) Non-language oriented: Within the common data sets,
most URLs are usually in one language, even when comparing
between benign and phishing URLs. Thus, this raises questions
about URLs that contain words from other languages, and
how the presence of such data in the real world might affect
performance. However, the vast majority of proposed models
do not really take into account this language difference when
analyzing and extracting features from a URL.

IV. MODEL IMPLEMENTATION

To evaluate the results of various state-of-the-art architec-
tures on “in-the-wild” data, we have devised the following
methodology. First we will select high performing architec-
tures, that are highly cited or very recent. Then, following
the papers, we implement these architectures and validate
their effectiveness on the same data sets as presented in the
papers. We will then perform some processing of the data
sets, dropping the path from each URL (if it exists) and re-
evaluate the performance of the models on this edited data set.
Finally, we evaluate the models on large-scale unlabelled data
sets meant to simulate “in the wild” data. The predictions of
the models are then verified and the results are collated.

A. Implemented Papers

For our research, we investigated the following papers:

1) Classifying Phishing URLs Using Recurrent Neural Net-
works (CPUURNN) [5]: This is a paper published in APWG
Symposium on Electronic Crime Research, 2017. In this paper,
the authors present a deep learning network architecture.
A one-hot-encoding is calculated on the URL string, and
passed into an embedding layer to create an 128-dimensional
embedding vector. The embedding vector is then passed into
a LSTM layer with a 150-step sequence, and the output is
connected to a fully connected layer with a Sigmoid activation
function. The network was trained to minimize binary cross-
entropy with additional dropout at the fully connected layer
to avoid over-fitting. It was then evaluated using a three-fold
cross validation technique and to obtain an average AUC of
more than 0.999. However, the authors of this paper did not
discuss any pre-processing that was done on their data sets.

We chose this paper for implementation and evaluation pur-
poses as this paper is highly cited compared to its publication
date, and the data sets used contain a large number of URLs

(over 2 million entries), which, when coupled with the model’s
performance, could give a good indication of the accuracy and
efficacy of the architecture proposed.

For this paper, we implemented this model following the
designs presented in the paper.

2) eXpose: A Character-Level Convolutional Neural Net-
work with Embeddings For Detecting Malicious URLs, File
Paths and Registry Keys [23]: This is a paper from 2017. In
this paper, the authors propose a different type of deep learning
architecture to classify phishing URLs based on character-level
CNNs. The paper first defines a character set consisting of 87
unique URL-valid characters. Then, during the pre-processing
phase, the length of each URL is set to be 200 characters long
(with appropriate truncation and padding if necessary), and
any characters present in a URL that doesn’t exist within the
character set is replaced with an <unknown> token.

The architecture of the model first uses an embedding layer
to create a 32-dimensional embedding vector. This results in
a 200×32 matrix that represents each URL. Four CNN filters
of sizes 2, 3, 4, and 5 each with 256 kernels are applied on
the matrixm, and the results are concatenated to form a 1024-
long vector. This is then passed to three fully connected layers
each with 1024 units and finally to the last layer consisting of a
single neuron with a Sigmoid activation function. The network
was trained to minimize binary cross-entropy with additional
dropout and layer normalization units added to avoid over-
fitting and speed up network training.

We chose this paper for implementation and evaluation
purposes as this paper is highly cited compared to its pub-
lication date. Furthermore, the paper also used a large data
set collected from VirusTotal, which is different compared to
many other papers which obtained their data from Alexa 1M
and PhishTank. We also note that this paper obtained very good
results with the model’s architecture.

For this paper, we implemented the model following the
designs presented in the paper.

3) PDRCNN: Precise Phishing Detection with Recurrent
Convolutional Neural Networks [26]: This is a journal paper
from October 2019. In this paper, the authors suggest a deep
learning network architecture based on CNNs to classify phish-
ing URLs. Firstly, they define a character set that contains 59
unique URL-valid characters. Then, during the pre-processing
phase, the length of each URL is set to be 255 characters
long (with appropriate truncation and padding if necessary),
and any characters present in a URL that doesn’t exist within
the pre-defined character set is replaced with an <unknown>
token.

The model uses a pre-trained word2vec embedding layer
to replace each character in the URL with a 64-dimensional
embedding vector, resulting in a 255×64 matrix representation
of each URL. Then, it is faded into a bi-directional LSTM
with 64 units in the hidden layer. The outputs of the forward
and backward pass of the LSTM are concatenated together to
form a 255×128 matrix. Three differently-sized CNN filters
(5×128, 6×128, 7×128), each with 32 convolution kernels are
applied on the matrix. A max pooling layer is applied on the
result, so each filter reduces the matrix to a 32-dimensional
vector, which are concatenated together, and connected to a



fully connected layer with a Sigmoid activation function. The
network is trained with a batch size of 2048 to minimize binary
cross-entropy with a dropout rate of 0.9 at the outputs of each
CNN layer to reduce over-fitting. The Adam optimizer was
also used for faster convergence. The model was evaluated
using 10-fold cross-validation, obtaining an average AUC of
more than 0.99.

We chose this paper for implementation and evaluation
purposes as this paper is very recent work, and the authors used
a large data set to test and evaluate their model. Furthermore,
the ideas of the two models above (LSTMs and CNNs) are
combined in this model. The authors had also performed a
synchronous test to prove that their model is robust and can
perform well in any given time period.

We received the model implementation from the paper’s
authors.

B. Our Models

As we could not, to the best of our knowledge, find any
research that suggest models specifically aimed at classifying
URLs when the path is not included, we decided to create
two different models for comparison. Even though they were
designed for URLs without the path, these models still achieve
competitive results when the path is included.

1) XGBoost model: XGBoost (Extreme Gradient Boosting)
is an algorithm that is made up of an ensemble of decision
trees. This algorithm achieves state-of-the-art results in many
tasks due to two main concepts: (1) Boosting - a technique in
which the algorithm is built from a number of weak learners,
so in each iteration, a new learner is added based on the error
of the algorithm thus far. (2) Gradient Descent - every added
tree is added in a way such that the algorithm steps in the
direction of the loss function gradient.

We chose to implement an XGBoost-based algorithm as,
in contrast to the other models presented above, XGBoost is
not a neural network. Furthermore, out of the many algorithms
that don’t rely on neural networks, XGBoost is known as one
of the most robust and performant algorithms.

As inputs to our model, we extracted both structural and
linguistics features from the URL. The linguistics features
were extracted using a Markov Chain (MC) model. MC is
a probabilistic model in which the probability of each event
depends wholly on the previously-occurring event. In our
context, each event is a sequence of letters, so the MC model
holds the probability to switch from one sequence of letters to
the next. We trained our model on data sets containing only
benign URLs.

We trained five different MC models: (1) Alexa domain
uni-gram - we broke up each domain name present in the
Alexa 1M data set into letters and calculated the probability
of switching between them. (2) Alexa URL uni-gram - we
broke up each URL in the Alexa 1M data set into letters
and calculated the probability of switching between them. (3)
Alexa URL parts - we broke up the URLs in Alexa into
different parts, i.e. top-level domain, domain, sub-domains, etc.
and calculated the probability of switching between them. (4)
Alexa URL bi-gram - we broke up each URL in the Alexa
1M data set into bi-grams and calculated the probability of

switching between them. (5) DNS URL bi-gram - we broke
up each URL in a DNS data set that we had in our lab into
bi-grams and calculated the probability of switching between
them. The full list of features that we have been extracted is
presented in Table II.

2) LSTM model: We also built a deep bi-directional LSTM-
based neural network since LSTMs are useful for analyzing
sequential patterns.

The architecture of the network is as follows. First, we
use a pre-trained word2vec embedding layer to replace each
character with an embedding vector. This representation is then
passed to a network consisting of three LSTM units, and a
fully connected layer with two output neurons. The first two
bi-directional LSTM units contains 200 hidden units, and only
pass the final output to the rest of the network. The last bi-
directional LSTM unit consists of 128 hidden units, and the
results of each iteration are passed to the last fully connected
layer. The final layer uses Softmax activation, and the whole
model was trained using an input-dropout rate of 0.3, and a
recurrent-dropout rate of 0.3 for each LSTM cell. The Adam
optimizer was used to train the network to minimize binary-
categorized cross-entropy.

C. Evaluated Data Sets

To evaluate each model, we used five different data sets as
described below (also in Table III).

1) Benchmark data set: This data set was taken from the
paper [10]. The authors of the paper attempted to create a
balanced benchmark data set which can be used to compare
different anti-phishing methods. The phishing URLs in the
data set were taken from PhishTank under the category of
“valid phishes” and “online”, meaning that the URLs point
to websites that are were and verifiably malicious at the time
the data was collected. Out of 15,000 benign URLs, 14,500 of
them were taken from Alexa 1M, and the rest were taken from
DMOZ and BOTW. This meant that the data set contained
a mix of high popularity URLs (from Alexa 1M) and low
popularity ones (from DMOZ and BOTW). Out of the 30,000
URLs published in this data set, 28,046 of them were live.
Most of the benign URLs in this data set do not contain the
path, as URLs taken from the Alexa 1M data set do not contain
the path.

2) 1M-PD data set: This data set was taken from the
paper [28]. This data set contains more than 1 million URLs, of
which 587,668 are phishing and the remaining 584,909 benign.
The source of the phishing URLs were from PhishTank and
Reasonable Antiphishing. The Reasonable Antiphishing data
source contained URLs taken from 2008 and 2015, and the
data source itself does not exist anymore. The benign URLs
were taken from a mix of Alexa 1M on 7 November, 2017,
and from a network security technical challenge. Most of the
benign URLs in this data set do not contain the path, as URLs
taken from the Alexa 1M data set do not contain the path.

3) CPUURNN data set: This data set was taken from [5].
This data set contains more than 2 million URLs. 1,146,432
phishing URLs that were taken from PhishTank and another
1,200,000 URLs in general were taken from CommonCrawl.
This data set is not public and we obtained it with permission
from the paper’s authors.



TABLE II. EXTRACTED FEATURES.

Feature Description Component
is idn Does the URL begin with “xn–” Hostname

level Number of dots + 1 Hostname

length Hostname, Domain

Consonant count Number of consonant letters Domain, Sub-domain

Digit as letter count Number of (0,1,2,5) at the URL. Domain

Digit count Number of digits at the URL. Domain, Sub-domain

Digit ratio The ratio between digits to URL length Domain, Sub-domain

Hyphens count Number of hyphens at the URL Domain, Sub-domain

Hyphens ratio The ratio between hyphens to URL length Domain, Sub-domain

Vowels count Number of vowels (a, e, i, o, u) at the URL Domain, Sub-domain

Vowels ratio The ratio between vowels to URL length Domain, Sub-domain

Entropy
Let ps be the ratio of symbol s at a given URL,
the domain entropy is calculated by:
H(URL) = −

∑
ps ∗ log2(ps)

Domain

MC Alexa unigram
probabilities multiplication

Multiplication of all the probabilities
associated we the specific URL.

Domain, Sub-domain,
Hostname parts

MC Alexa unigram
probabilities mean

The average value of all the probabilities
associated we the specific URL.

Domain, Sub-domain,
Hostname parts

MC Alexa unigram probabilities
standard deviation

The standard deviation of all the probabilities
associated we the specific URL.

Domain, Sub-domain,
Hostname parts

MC Alexa bi-gram
probabilities multiplication

Multiplication of all the probabilities
associated we the specific URL.

Hostname

MC DNS bi-gram
probabilities multiplication

Multiplication of all the probabilities
associated we the specific URL.

Hostname

Word probability
Sum of probabilities of suspicious
words to appear in a phishing URL.

Hostname

Tld probability
The probability of the TLD to
appear in a suspicious URL.

TLD

TABLE III. DATA SETS DESCRIPTION.

Phishing Benign
Data set

Num Source Num Source

Benchmark 14,745 PhishTank 13,301
Alexa
DMOZ
BOTW

1M-PD 573,975
PhishTank
R. Antiphishing

587,909
Alexa
Technical Challenge

CPUURNN 1,146,432 Phishtank 1,200,000 CommonCrawl

PDRCNN 245,385 Phishtank 245,023 Alexa

Our data set 647,393
PhishTank
R. Antiphishing
OpenPhish

593,447 Alexa

4) PDRCNN data set: This data set was taken from the
paper [26]. The data set contains approximately 500,000
URLs, of which 245,385 are phishing URLs, collected from
PhishTank from the period of August 2006 to March 2018,
and the remaining 245,023 URLs benign. In order to create
the set of benign URLs, the authors first used search engines
to search for the domain names that appeared in the Alexa
1M data set. Then, they collected the top 10 results for each
search, and filtered out URLs that were offline. This data set is
not public and we obtained it with permission from the paper’s
authors.

5) Our data set: We also created our own data set using
the following method. We took 11 instances of Alexa’s ranking
from 2010 to 2020. If the URL appears in the top 500K at
least three times then it is labelled as a benign URL. For

phishing URLs we used PhishTank (PT), OpenPhish (OP)
and Reasonable Antiphishing (RA). The paths are dropped
from each URL. However, since some phishing URLs use
XSS attacks to inject phishing content into a benign domain,
dropping the path results in URLs which are labelled as
phishing but are actually benign. In this case, we drop the
URLs labelled phishing but whose domains appear in Alexa
1M.

V. EXPERIMENTAL RESULTS

A. Labelled Data Sets

In this section, we present the results of the implemented
models (as described above) on the labelled data sets.

1) URLs with path: In order to ensure that our imple-
mentation of the various models are correct, we compare our
implemented models’ performances on the same data sets as
mentioned in the papers. We want to make sure that we obtain
the same or very similar results as presented in the literature.
As the evaluation of the models was done on URLs that include
the path, for a proper comparison, we have to evaluate our
models on the same type of URLs. As described in IV-C, only
two data sets (CPUURNN data set and PDRCNN data set)
contain benign URLs that include the path, so we evaluated our
models models were evaluated For both data sets, we compare
the results of the corresponding papers and to the results that
we obtained with our own implementations.

Data Set 1: CPUURNN data set For this data set, we
obtained the data set that was presented in the paper from the
authors, and implemented the described model by ourselves.



TABLE IV. URLS WITH PATH RESULTS.

Model and Dataset Reported Result Accuracy Precision Recall F1 AUC

CPUURNN [5]
Paper 0.986 0.986 0.986 0.986 0.999

Our implementation 0.987 0.086 0.989 0.987 0.999

PDRCNN [26]
Paper 0.945 0.966 0.920 0.943 0.985

Our implementation 0.956 0.973 0.937 0.955 0.989

Data Set 2: PDRCNN data set With respect to this data set,
we obtained both the data set and the model’s implementation
from paper’s authors.

Each of the data sets was split into an 8:1:1 training,
validation, testing split. The validation set was also used for
early stopping when training the model.

The results are presented in Table IV. As seen, we obtained
very similar results to those presented in the paper. This
suggests that our implementation matches that of the papers’.

2) URLs without path: As described in III, URLs without
the path should also be a focus in our analysis in order to keep
up with newer phishing attempts. As such, we first perform
some pre-processing of the various data sets described above
to remove the path (when it exists) from each URL. In order
to account for potential XSS attacks (after removing the path),
we remove URLs which appear in Alexa 1M. The results of
each of the models are presented in Table V.

From the table, we can conclude that the benchmark data
set is too small to be fitted by neural network-based models.
Also, in general, the models are able to successfully fit to the
data sets which do not contain the path, albeit with a slight
drop in performance. Our self-collated data set appears to be
the hardest data set for the models to fit to. However, the
XGBoost model seems to outperform all other models on the
various data sets.

B. Unlabelled Data Sets

We discussed in III-D the potential inability for models
which obtain great results on tested data sets to generalise to
“in the wild” data. In this section, we present two unlabelled
data sets that are meant to simulate “in the wild” data. Then,
we present our evaluation and verification method as well
as the results of running the implemented models on the
unlabelled data sets.

1) Description: The unlabelled data sets that we have
obtained and used are as follows:

CertStream data - CertStream is an intelligence feed that
gives updates from the Certificate Transparency Log network,
which tracks the issuing of certificates to websites in real time.
We recorded CertStream data for eight days from 18 to 24
July 2019 (86,660,000 instances in total). Since this is a large
amount of data, it will be difficult to evaluate our models on
the entire data set. Hence, we randomly selected 0.02% of the
data set in a uniformly distributed manner. We ended up with
slightly more than 170,000 instances, uniformly distributed
between each day.

As discussed in III, more and more phishing URLs tend to
use the HTTPS protocol, and hence would need to register their
certificate, which would be tracked by the Certificate Trans-
parency Log network. Thus, there would be several instances

of phishing URLs present within this data set. Therefore,
we can use this data set to evaluate the performance of our
implemented models.

Proxy data - We obtained, from a large organization, a
data set that contains approximately 2 billion URL requests
from the 120,000 users in the organization. The requests was
recorded over a period of two weeks, from 17 July to 2 August,
2019. For each URL, we removed the path (which is mostly
encrypted), and dropped duplicates, ending with slightly more
than 500,000 unique entries.

For any large organization, the proxy-level requests is a
good place to consider integrating a phishing detection model.
Hence, it is a good idea to evaluate the performances of the
various models on this data set, as this will likely be a common
use-case of said models.

2) Evaluation methods: Precision@k is an evaluation met-
ric that measures the number of relevant instances at the top
k results of a model. In many scenarios, where a model may
be suffering from a high false positive rate, this metric can be
considered instead to select instances of predictions where the
model is highly confident. This metric also makes it easy for
experts to evaluate and verify since it is only required to check
the top k results (instead of the entire data set).

In our evaluation, we choose to use the metric, assuming
that if a model achieves low Precision@k results, then it
will likewise achieve even lower results in other metrics (i.e.
AUC, accuracy, etc.). In order to verify whether our model has
predicted the label of a URL correctly, we use VirusTotal, a
well-known service owned by Google that uses various anti-
virus agents to analyze files and URLs. We used the readily
available API to automatically check if the URLs that were
classified by the models as phishing are actually phishing
URLs.

Our validation method is based on the assumption that
because our unlabelled data sets are relatively old (July 2019),
any phishing URLs that exist within the data set would have
already been reported by at least one of the anti-virus agents
on VirusTotal. Furthermore, if there is a probability that the
above assumption does not hold, then this probability is not
larger than a certain small threshold.

3) Results: For our evaluation, we performed the following
steps.

1) We train each of the five presented models as de-
scribed above on each of the 5 presented data sets.
We thus end up with 25 trained models.

2) Each of these 25 train models are then used to obtain
predictions for the CertStream and Proxy data sets.
We obtain 50 different sets of results.

3) For each set of results, we calculate the Preci-
sion@100 by taking the top k=100 highest scored



TABLE V. URLS WITHOUT PATH RESULTS.

Data set Model Accuracy Precision Recall F1 AUC

1M-PD [28]

CPUURNN Model [5] 0.780 0.806 0.730 0.767 0.863
CNN Model [23] 0.770 0.775 0.753 0.764 0.857

LSTM Model 0.769 0.864 0.633 0.731 0.852
XGBoost 0.857 0.828 0.897 0.861 0.943

PDRCNN Model [26] 0.761 0.884 0.594 0.711 0.848

benchmark dataset [10]

CPUURNN Model 0.501 1 0.003 0.007 0.747
CNN Model 0.610 0.564 0.973 0.714 0.811

LSTM Model 0.717 0.771 0.618 0.686 0.788
XGBoost 0.923 0.908 0.942 0.925 0.963

PDRCNN Model 0.740 0.758 0.706 0.731 0.827

CPUURNN dataset [5]

CPUURNN Model 0.752 0.800 0.650 0.717 0.848
CNN Model 0.748 0.828 0.605 0.699 0.849

LSTM Model 0.746 0.768 0.682 0.722 0.843
XGBoost 0.765 0.747 0.777 0.762 0.871

PDRCNN Model 0.738 0.822 0.587 0.685 0.839

our dataset

CPUURNN Model 0.768 0.803 0.696 0.745 0.852
CNN Model 0.766 0.827 0.657 0.732 0.851

LSTM Model 0.759 0.834 0.631 0.719 0.845
XGBoost 0.812 0.789 0.838 0.813 0.912

PDRCNN Model 0.745 0.795 0.642 0.711 0.827

PDRCNN [26]

CPUURNN Model 0.677 0.668 0.693 0.680 0.769
CNN Model 0.678 0.626 0.867 0.727 0.784

LSTM Model 0.670 0.645 0.743 0.691 0.760
XGBoost 0.735 0.708 0.791 0.747 0.834

PDRCNN Model 0.689 0.684 0.693 0.688 0.781

URLs and checked each of the URLs using the
VirusTotal API.

The top 100 URLs were selected in such a way that
duplicated domain names were not selected more than once.
The results are presented in Table VI.

As can be seen, the results have dramatically decreased
from that in Table V. The models that had excellent perfor-
mance on the test data sets were unable to generalise well on
data meant to simulate real-world conditions. Therefore, there
is a gap between what these phishing detection models have
claimed to be able to do, and the results they actually produce.

VI. SOLUTION

In this section, we propose a new solution that specifically
targets this issue. We show that our solution not only achieves
competitive results on the same test data sets, but is also able
to generalise well on the data sets meant to simulate real-world
conditions.

Based on the idea of using “in the wild” data as a stepping
stone, our model first uses the unlabelled URLs to learn a
representation of a URL, which is then passed as inputs to the
classification layers.

To the best of our knowledge, the idea of using “in the
wild” data as a learning step to classify phishing URLs has
not been done nor researched upon before.

A. Design

Our solution comprises two different neural networks.

The first network is an auto-encoder that is trained on
the unlabelled data set in order to learn an unsupervised

representation of a URL. Auto-encoders are a type of neural
network that is able to learn efficient data-codings by learning
how to ignore the noise present in the input [15], [25]. Usually
comprised of two parts, the first part, the encoding layers, seek
to reduce an input vector into a smaller representation, while
the second part, the decoding layers, attempt to reconstruct the
original input vector from the reduced representation.

We aim to use auto-encoders to learn a “summarised”
representation of a URL. As the training data is unlabelled,
there will be no bias towards either phishing or benign URLs.
Instead, we will use the second neural network, the classifier
(described below) to detect different patterns in these represen-
tations that are otherwise not readily apparent in the original
string.

The second network is a classification model made up of
LSTM modules. However, instead of using the original URL as
inputs, it instead takes as inputs the compressed representation
of a URL as learned by the auto-encoder.

Through the transfer of learning between an unsupervised
model to a supervised one, we show later that this model is
able to outperform the other models on “in the wild” data.

Below, we describe in detail our model and pre-processing
steps.

Firstly, we set all URLs to have a length of 38 characters.
URLs longer than that are truncated while shorter URLs are
padding with a <padding> token. Then, we extract character-
level trigrams from the URLs. We define a “trigram-alphabet”,
where we take the top 3200 most common trigrams present in
the entire data set (which accounts for 75% of all trigrams),
and use it to encode a URL as a sequence of trigram labels.
Any trigrams not present within the alphabet is denoted using



TABLE VI. UNLABELLED DATA SET WITHOUT DUPLICATES RESULTS.

Target data set Trained data set
Model

CPUURNN CNNModel LSTMModel PDRCNN XGBoost

CertStream

1M-PD 0.02 0.23 0.18 0.23 0.17
benchmark dataset 0.19 0.19 0.7 0.12 0
CPUURNN 0.13 0.13 0.12 0.21 0.12
our dataset 0.09 0.11 0.22 0.9 0.35
PDRCNN 0.04 0.12 0.05 0.31 0.04

Proxy

1M-PD 0.02 0.02 0.07 0.08 0.02
benchmark dataset 0.01 0.01 0 0.01 0.04
CPUURNN 0.04 0 0.07 0.07 0.05
our dataset 0.01 0 0.05 0.04 0.1
PDRCNN 0.06 0.01 0.09 0.11 0.04

DNS1

1M-PD 0.04 0.01 0.04 0.07 0.07
benchmark dataset 0.02 0.02 0.05 0.03 0.02
CPUURNN 0.07 0.02 0.01 0 0.02
our dataset 0.04 0.08 0.06 0.08 0.04
PDRCNN 0.03 0.05 0.04 0.05 0.02

DNS2

1M-PD 0.11 0.08 0.23 0.27 0.09
benchmark dataset 0.01 0.02 0.01 0.02 0.03
CPUURNN 0.05 0.06 0.18 0.17 0.12
our dataset 0.01 0.03 0.16 0.09 0.13
PDRCNN 0.06 0.06 0.06 0.17 0.09

an <unknown> token. As such, including <padding> and
<unknown> tokens, there are 3202 unique trigrams in our
“trigram-alphabet”. As each URL is exactly 38 characters
long, we are able to represent each URL as a sequence of
36 trigrams.

Our auto-encoder follows an asymmetric model, with the
encoding and decoding layers differing from one another.

The encoding layers comprise an embedding layer which
transform numerical-labelled vectors into 10-dimensional em-
bedding vectors. This results in each URL being represented
as a 36×10 matrix. The matrix is then passed as a 2D vector
into a unidirectional LSTM module with 4 hidden nodes. The
output of this LSTM module, a 36×4 matrix is then taken to
be the “compressed” representation of a URL.

The decoding layers take this “compressed” representation
and attempt to reconstruct the original vector. This is done
through three fully connected layers of sizes 144, 72, and 36
respectively.

The auto-encoder was trained on the unlabelled data set
with the aim to minimize mean-squared error between the
original and the reconstructed vectors. The Adam optimizer
with a learning rate of 0.001 was used to perform the back-
propagation.

The classification layers take as input the “compressed”
representation of the encoding layers mentioned above. It
consists of three fully connected layers of sizes 144, 64 and 2
nodes.

In order to train the classification layers, the auto-encoder
was trained first using the methods described above. Then,
the encoding layers (with its trained weights) were frozen and
the “compressed” outputs rerouted to the classification layers
as previously described. This new model was trained on the
labelled data set with the aim to minimize binary cross-entropy
with additional dropout units inserted in the linear layers to

reduce over-fitting. The Adam optimizer was used with the
learning rate set to 0.001 to perform the back-propagation.

B. Results

The auto-encoder was first trained on the unlabelled data
sets meant to simulate “real-world” data. In our case, this was
the CertStream data set. Then, for validation, a five-fold cross-
validation split was performed. Each model (using the same
auto-encoder each time), was trained on five different splits
of the CPUURNN data set, and the validation results were
collected and averaged. The validation results on the labelled
data set, along with the other competitive models, are presented
in Table VII.

For evaluation, we again calculated the Precision@100
metric for each model, and averaged the results. The final
results are presented in Table VIII, with our model’s results
bolded.

We can see that our model offers a significant improvement
in terms of correctly classifying “real-world” URLs. Although
our model does not produce exceptional “in-lab” results, we
stress that these results do not matter as we are focusing on
the results produced on “real-world” data. In that aspect, we
are confident that our solution has merit, and may be useful in
exploring new ways of utilising unlabelled “in the wild” data
to augment previous phishing-URL-classification models.

VII. CONCLUSION

In this paper, we evaluated the performance of various
URL-based, phishing detection machine learning models in
a “real-world” environment. We have shown that in such an
environment, the URL path is usually not included during
analysis, hence the results of these research papers are put on
doubt. To provide concrete results, we evaluated the models’
performances in this environment, by first implementing five
different machine learning models (three from past research



TABLE VII. SOLUTION LABELLED DATA SET RESULTS.

Data set Model Accuracy Precision Recall F1

CPUURNN

CPUURNN 0.752 0.800 0.650 0.717
CNN Model 0.748 0.828 0.605 0.699

LSTM Model 0.746 0.768 0.682 0.722
XGBoost 0.765 0.747 0.777 0.762
PDRCNN 0.738 0.822 0.587 0.685

Our Solution 0.712 0.687 0.842 0.756

TABLE VIII. SOLUTION UNLABELLED DATA SET RESULTS.

Target data set Trained data set
Models

CPUURNN CNNModel LSTMModel PDRCNN XGBoost Our Solution

Certstream CPUURNN 0.13 0.13 0.12 0.21 0.12 0.48

works, and two that were self-designed), and then evaluating
them on five different labelled data sets which have been pre-
processed to remove the URL path. The results show that these
models are still able to perform competitively on such pre-
processed data sets. To the best of our knowledge, we are the
first to present such results on data sets of URLs that do not
contain the path.

We have also evaluated the models on data sets meant to
simulate a real world environment by using unlabelled URLs
and verifying them using VirusTotal. In this scenario, we
show that that these models are completely unable to match
their originally-claimed performances, obtaining results that
are much lower than what was originally projected. We assume
that the main cause of this is due to the “polarity” of the
labelled data sets used during training and testing, where URLs
are either “very benign” or “very malicious”. Hence, these
models are unable to due with URLs that fall into the “grey
area” between the two labels, which are exceedingly common
during real-world usage. This represents a gap between what
these models claim to be able to do, and the concrete results
that we obtained.

Last but not least, we presented and demonstrated a model
specifically designed to target this issue. By using an auto-
encoder trained on unlabelled data sets, the model was able
to learn a representation of a URL which was then passed as
inputs to a classification model. This transfer learning method
allowed the model to generalise inputs even on “in the wild”
data, hence obtaining improved performance on those data sets.

REFERENCES

[1] Neda Abdelhamid. Multi-label rules for phishing classification. Applied
Computing and Informatics, 11(1):29–46, 2015.

[2] Farhan Douksieh Abdi and Lian Wenjuan. Malicious url detection
using convolutional neural network. Journal International Journal of
Computer Science, Engineering and Information Technology, 2017.

[3] APWG. Q1 Report, 2019.

[4] APWG. Q4 Report, 2019.

[5] Alejandro Correa Bahnsen, Eduardo Contreras Bohorquez, Sergio Vil-
legas, Javier Vargas, and Fabio A González. Classifying phishing
urls using recurrent neural networks. In 2017 APWG symposium on
electronic crime research (eCrime), pages 1–8. IEEE, 2017.

[6] Simon Bell and Peter Komisarczuk. An analysis of phishing blacklists:
Google safe browsing, openphish, and phishtank. In Proceedings of
the Australasian Computer Science Week Multiconference, pages 1–11,
2020.

[7] Eduardo Benavides, Walter Fuertes, Sandra Sanchez, and Manuel
Sanchez. Classification of phishing attack solutions by employing deep
learning techniques: A systematic literature review. In Developments
and Advances in Defense and Security, pages 51–64. Springer, 2020.

[8] Aaron Blum, Brad Wardman, Thamar Solorio, and Gary Warner.
Lexical feature based phishing url detection using online learning. In
Proceedings of the 3rd ACM Workshop on Artificial Intelligence and
Security, pages 54–60, 2010.

[9] Ye Cao, Weili Han, and Yueran Le. Anti-phishing based on automated
individual white-list. In Proceedings of the 4th ACM workshop on
Digital identity management, pages 51–60, 2008.

[10] Kang Leng Chiew, Ee Hung Chang, Choon Lin Tan, Johari Abdullah,
and Kelvin Sheng5 Chek Yong. Building standard offline anti-phishing
dataset for benchmarking. International Journal of Engineering &
Technology, 7(4.31):7–14, 2018.

[11] Kang Leng Chiew, Choon Lin Tan, KokSheik Wong, Kelvin SC Yong,
and Wei King Tiong. A new hybrid ensemble feature selection
framework for machine learning-based phishing detection system. In-
formation Sciences, 484:153–166, 2019.

[12] Kang Leng Chiew, Kelvin Sheng Chek Yong, and Choon Lin Tan. A
survey of phishing attacks: their types, vectors and technical approaches.
Expert Systems with Applications, 106:1–20, 2018.

[13] FBI. Internet Crime Report, 2019.

[14] Engin Kirda. Getting under alexa’s umbrella: Infiltration attacks against
internet top domain lists. In Information Security: 22nd International
Conference, ISC 2019, New York City, NY, USA, September 16-18, 2019:
Proceedings, volume 11723, page 255. Springer Nature, 2019.

[15] Mark A. Kramer. Nonlinear principal component analysis using
autoassociative neural networks. AIChE Journal, 37(2):233–243, 1991.

[16] Yukun Li, Zhenguo Yang, Xu Chen, Huaping Yuan, and Wenyin Liu.
A stacking model using url and html features for phishing webpage
detection. Future Generation Computer Systems, 94:27–39, 2019.

[17] Jakub Nowak, Marcin Korytkowski, Patryk Najgebauer, Marcin Woz-
niak, and Rafa l Scherer. Url-based phishing attack detection by
convolutional neural networks.

[18] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczyński, and Wouter Joosen. Tranco: A research-oriented
top sites ranking hardened against manipulation. arXiv preprint
arXiv:1806.01156, 2018.

[19] KV Pradeepthi and A Kannan. Performance study of classification
techniques for phishing url detection. In 2014 Sixth International
Conference on Advanced Computing (ICoAC), pages 135–139. IEEE,
2014.

[20] Pawan Prakash, Manish Kumar, Ramana Rao Kompella, and Minaxi
Gupta. Phishnet: predictive blacklisting to detect phishing attacks. In
2010 Proceedings IEEE INFOCOM, pages 1–5. IEEE, 2010.

[21] Routhu Srinivasa Rao, Tatti Vaishnavi, and Alwyn Roshan Pais. Catch-
phish: detection of phishing websites by inspecting urls. Journal of
Ambient Intelligence and Humanized Computing, 11(2):813–825, 2020.

[22] Ozgur Koray Sahingoz, Ebubekir Buber, Onder Demir, and Banu Diri.
Machine learning based phishing detection from urls. Expert Systems
with Applications, 117:345–357, 2019.



[23] Joshua Saxe and Konstantin Berlin. expose: A character-level convo-
lutional neural network with embeddings for detecting malicious urls,
file paths and registry keys. arXiv preprint arXiv:1702.08568, 2017.

[24] Rakesh Verma and Keith Dyer. On the character of phishing urls:
Accurate and robust statistical learning classifiers. In Proceedings of
the 5th ACM Conference on Data and Application Security and Privacy,
pages 111–122, 2015.

[25] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio,
Pierre-Antoine Manzagol, and Léon Bottou. Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local
denoising criterion. Journal of machine learning research, 11(12), 2010.

[26] Weiping Wang, Feng Zhang, Xi Luo, and Shigeng Zhang. Pdrcnn:
Precise phishing detection with recurrent convolutional neural networks.
Security and Communication Networks, 2019, 2019.

[27] Guang Xiang, Jason Hong, Carolyn P Rose, and Lorrie Cranor.
Cantina+ a feature-rich machine learning framework for detecting
phishing web sites. ACM Transactions on Information and System
Security (TISSEC), 14(2):1–28, 2011.

[28] Huaping Yuan, Zhenguo Yang, Xu Chen, Yukun Li, and Wenyin
Liu. Url2vec: Url modeling with character embeddings for fast
and accurate phishing website detection. In 2018 IEEE Intl Conf
on Parallel & Distributed Processing with Applications, Ubiquitous
Computing & Communications, Big Data & Cloud Computing, Social
Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), pages 265–272. IEEE,
2018.

[29] Yue Zhang, Jason I Hong, and Lorrie F Cranor. Cantina: a content-based
approach to detecting phishing web sites. In Proceedings of the 16th
international conference on World Wide Web, pages 639–648, 2007.

VIII. APPENDIX

APPENDIX



TABLE IX. UNLABELLED DATASET WITH DUPLICATES RESULTS.

Target dataset Trained dataset
Model

ClassificationUsingRNN CnnModel LstmModel PDRCNN XGBoost

CertStream

1M-PD 0.18 0.13 0.23 0.11 0.23
benchmark 0.13 0.01 0.04 0.01 0.02
Classifying Phishing RNN 0.18 0.02 0.12 0.08 0.26
our data 2020-03-25 0.05 0.11 0.09 0.11 0.38
PDRCNN 0.14 0.01 0.18 0.02 0.05

Proxy

1M-PD 0.01 0 0.03 0 0.04
benchmark 0.01 0 0 0 0.01
Classifying Phishing RNN 0 0 0.01 0 0.03
our data 2020-03-25 0 0 0 0 0.04
PDRCNN 0 0 0 0 0


