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Abstract. We present an alternative technique for similarity estimation
under locality sensitive hashing (LSH) schemes with discrete output. By
utilising control variates and extra information, we are able to achieve
better theoretical variance reductions compared to maximum likelihood
estimation with extra information. We show that our method obtains
equivalent results, but slight modifications can provide better empirical
results and stability at lower dimensions. Finally, we compare the various
methods’ performances on the MNIST and Gisette dataset, and show
that our model achieves better accuracy and stability.
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1 Introduction

Suppose we are given a dataset Xn×p where we want to estimate some similarity
measure ρ(~xi, ~xj) := pij between any two observations (thus denoted as row vec-
tors, ~xi and ~xj). Computing all pairwise similarities would take at least O(n2p)
time, which is costly when n, p are large.

Locality sensitive hashing (LSH) schemes (such as random projections [1,8],
sign random projections [3], and minwise hashing [2]) allow for efficient di-
mensional reduction of the original dataset X from p-dimensional vectors to
k-dimensional vectors [16], k � p. We construct a hash function h : Rp → R (in-
volving random variables) and compute h(~xi) = vi, 1 ≤ i ≤ n. P[vi = vj ] is used

to estimate ρ(~xi, ~xj). In practice, we hash k times, and compute
∑k

s=1 1{vis=vjs}

k
to find an estimate of ρ(~xi, ~xj). This lowers the computational time for obtaining
an estimate of each pairwise similarity from O(n2p) to O(n2k), plus the addi-
tional pre-processing time required to compute the hashed value of each vector.

Using computational statistics, one can use techniques such as maximum
likelihood estimation [13] to estimate pairwise similarities with sign random
projections with extra information [11], or control variates to estimate pairwise
similarities with random projections [9,10] with extra information. These meth-
ods keep to the same order of pre-processing time as the original LSH schemes,
but obtain a lower variance than the ordinary estimates using the same number
of samples.
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2 Our Contributions

Both [11,13] use the MLE technique for variance reduction for a class of LSH
schemes similar to sign random projections, where the estimator relies on com-

puting some form of
∑k

s=1 1{vis=vjs}

k . However, we show that we can adapt the
control variate technique in [9,10], using extra vectors to work with these LSH
schemes, to come up with a control variate estimator for our similarity estimates.
We show that this estimator obtains the same theoretical variance reduction as
the MLE with the additional benefit of increased numerical stability. We also
provide a generalised framework that one can use to generate estimators for any
arbitrary number of control variates, allowing one to generate additional extra
vectors for further variance reduction. Finally, we demonstrate our results via
empirical simulations on the MNIST [12] and Gisette datasets [6,14].

3 Review of Preliminary Concepts

We first review the control variate technique. Control variates are used for vari-
ance reduction in Monte Carlo simulations [15]. By exploiting the difference
between a known estimator and its observed result, the original estimator can
be corrected to reduce the error between the observed value and the actual value.

Let X,Y be random variables. Suppose we want to estimate µX = E[X].
If we can find a random variable Y such that µY = E[Y ] can be analytically
calculated, then, Z = X + c(Y − µY ) is also an unbiased estimator for X as
E[Z] = E[X]+c(E[Y ]−µY ) = µX for any choice of the coefficient c. By choosing

c = −Cov(X,Y )
Var(Y ) , we get an expression for the variance of Z as Var(Z) = Var(X)−

(Cov(X,Y ))2

Var(Y ) which always results in a reduced variance as long as Cov(X,Y ) is

non-zero. This choice of c is the optimal coefficient to minimise the variance [15].

We now explain the extra information idea in [11,10] using Figure 1.

~xi

~xj

vi

vj

h(~xi)

h(~xj)

P[vi = vj ]ρ(~xi, ~xj)

Existing procedure

~xi

~xj

~e v~e

vi

vj

ρ(~xi, ~xj)

h(~xi)

h(~xj)

h(~w)
P[vi = vj ]

ρ(~xi, ~w) P[vi = ~w]

P[vj = ~w]ρ(~xj , ~e)

Using extra information

Fig. 1. Using one extra vector ~e for which we know relevant information (shown in
blue) to estimate unknown ρ(~xi, ~xj) (shown in red).
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In the original LSH scheme, we know the hash function h and its relation to
P[vi = vj ] (blue). We condition on these information to find ρ(~xi, ~xj) (red).

In the extra information case, we generate an extra vector ~e ∈ Rp, then
compute and store ρ(~xi, ~e), 1 ≤ i ≤ n. This takes O(np) time and requires O(n)
space. We then compute the hashed values vi, 1 ≤ i ≤ n and v~e. Finally, we
condition on all of the known information (blue) to estimate ρ(~xi, ~xj) (red).

We now describe what happens in practice where we hash k times. The
hashed results are stored in a matrix Yn+1,k, where the last row corresponds to
the k hashed values h(~e). We denote the last row as Ye.

We remark that the hashed values can be either discrete [2] or binary [3],
depending on the LSH scheme. The MLE approach [11] then considers the fol-
lowing sets for binary and discrete-typed hashes where:

A := {s | Yis 6= Yjs, Yjs = Yes} B := {s | Yis = Yjs, Yjs 6= Yes} (1)

C := {s | Yis = Yjs, Yjs = Yes} D := {s | Yis 6= Yjs, Yjs 6= Yes} (2)

is the collection of indices for binary hashes, 1 ≤ s ≤ k and

A := {s | Yis = Yjs, Yjs = Yes} (3)

B := {s | Yis 6= Yjs, Yis 6= Yes, Yjs = Yes} (4)

C := {s | Yis 6= Yjs, Yis = Yes, Yjs 6= Yes} (5)

D := {s | Yis = Yjs, Yis 6= Yes, Yjs 6= Yes} (6)

E := {s | Yis 6= Yjs, Yis 6= Yes, Yjs 6= Yes} (7)

is the collection of indices for discrete hashes, 1 ≤ s ≤ k.
Then, let ni denote the cardinality of the set i, with nA +nB +nC +nD = k

for binary hashes, and nA + nB + nC + nD + nE = k for discrete hashes. Also,
let pi be the probability that an observed element falls in set i.

3.1 Binary hashes

For any given observed cardinalities nA, nB , nC , nD, the likelihood of such an
event, given parameters pA, pB , pC , pD, would be

L(pA, pB , pC , pD) =
k!

nA!nB !nC !nD!
pnA

A pnB

B pnC

C pnD

D (8)

However, as ρ(~xi, ~e) have been stored and computed, then we also have the
following constraints

pA + pC = ρ(~xj , ~e) := pje (9)

pC + pD = ρ(~xi, ~e) := pie (10)

pA + pB + pC + pD = 1 (11)

Taking the log-likelihood and substituting in the above constraints, we obtain

l(pC) = K + nA log(pje − pC) + nB log(1 + pC − pie − pje)
+ nC log(pC) + nD log(pie − pC)

(12)



4 Jeremy Chew and Keegan Kang

p̂C can thus be expressed as a root of a cubic, as described in [11], and found
via numerical methods.

3.2 Discrete hashes

The procedure for discrete hashes is similar. We have the same constraints, but
since we now have five variables (instead of four in the binary case), we write
our log-likelihood in terms of two variables, say pA and pD to obtain

l(pA, pD) = K + nA log(pA) + nB log(pje − pA) + nC log(pie − pA)

+ nD log(pD) + nE log(1− pie − pje + pA − pD)
(13)

By calculus, we can express

pD =
nD(1 + pA − pie − pje)

nD + nE
(14)

and find pA expressed as a root of a cubic via numerical methods.
However, finding the root of these cubics are not numerically stable for low

values of k, which leads us to consider a new estimator.

4 Our Control Variate Estimator: Binary Hashes

Suppose we have generated a random vector ~e ∈ Rp, and computed and stored
the similarities ρ(~xi, ~e) for each observation, similar to the setup in [11,10]

Now, suppose we want to estimate pij = ρ(~xi, ~xj) for any pair of observations
~xi, ~xj , and we have k hashes. We define the following random variables

A :=

∑k
s=1 1{Yis=Yjs}

k
B :=

∑k
s=1 1{Yis=Yes}

k
C :=

∑
s 1{Yjs=Yes}

k
(15)

Then, E[A] = pij , E[B] = ρ(~xi, ~e) and E[C] = ρ(~xj , ~e). We know E[B],E[C]
from pre-calculating ρ(~xi, ~e) and ρ(~xj , ~e).

We define the following new estimator:

A′ = A+ c1(B − E[B]) + c2(C − E[C]) (16)

A′ is an unbiased estimator of pij and guaranteed to have a lower variance
than A as long as either (or both of) Cov(A,B) and Cov(A,C) are non-zero.

By finding the partial derivative of Var(A′) and solving for optimal ĉ1, ĉ2, we
can get the optimal control variate corrections. Thus, we have

Var(A′) =Var(A) + c21Var(B) + c22Var(C) + 2c1Cov(A,B) + 2c2Cov(A,C)

+ 2c1c2Cov(B,C)

(17)
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The partial derivatives are

∂Var(A′)

∂c1
= 2c1Var(B) + 2Cov(A,B) + 2c2Cov(B,C) (18)

∂Var(A′)

∂c2
= 2c2Var(C) + 2Cov(A,C) + 2c1Cov(B,C) (19)

Denoting the covariance matrix between B and C as Σ, and packing the co-
variances Cov(A,B),Cov(A,C) as a column vector ΣA, we can write the equa-
tions forming the optimal values of c1 and c2 as follows: [c1 c2]T = Σ−1ΣA.

Now, the control variate corrections c1 and c2 involve the true value of pij
in the calculations of Σ and ΣA, which we do not have. To get around this, one
solution is to obtain an initial estimate for pij using 1

k

∑k
s=1A similar to [10].

Another solution involves finding analytic expressions for Σ and ΣA, collecting
the pij terms on one side, and finally solving the resultant cubic.

Theorem 1. Suppose we set g(pC) to be the cubic found after calculus in (12)
and f(pC) to be the cubic we find after our control variate approach. We have

that f(pA)
g(pA) = −2.

Proof. We can write A,B,C in our estimator as

A =
nB + nC

k
B =

nC + nD
k

C =
nA + nC

k
(20)

We set A′ = pij , which we rewrite in terms of pC by using the result presented
in (9)-(11). Furthermore, as A,B,C are Bernoulli random variables, we can easily
calculate their expectations, variances and covariances as follows

E[A] = pij = 1 + 2pC − pie − pje (21)

Var(A) = pij(1− pij) = (1 + 2pC − pie − pje)(pie + pje − 2pC) (22)

E[B] = pie E[C] = pje (23)

Var(B) = pie(1− pie) Var(C) = pje(1− pje) (24)

Cov(A,B) = pC − pie(1 + 2pC − pie − pje) Cov(B,C) = pC − piepje (25)

Cov(A,C) = pC − pje(1 + 2pC − pie − pje) (26)

We can then substitute all these rewritten expressions back into (16). By
bringing A′ over, and cross-multiplying to remove the denominator, we obtain
the following equation, which we call f(pC):

f(pC) = − 2n1p
3
C + 4n1p

2
Cpie + 2n1p

2
Cpje − 2n1p

2
C − 2n1pCp

2
ie − 2n1pCpiepje

+ 2n1pCpie − 2n2p
3
C + 2n2p

2
Cpie + 2n2p

2
Cpje − 2n2pCpiepje − 2n3p

3
C

+ 4n3p
2
Cpie + 4n3p

2
Cpje − 2n3p

2
C − 2n3pCp

2
ie − 6n3pCpiepje + 2n3pCpie

− 2n3pCp
2
je + 2n3pCpje + 2n3p

2
iepje + 2n3piep

2
je − 2n3piepje − 2n4p

3
C

+ 2n4p
2
Cpie + 4n4p

2
Cpje − 2n4p

2
C − 2n4pCpiepje − 2n4pCp

2
je + 2n4pCpje

(27)

which is exactly equivalent to the 1
2 of cubic in [11].



6 Jeremy Chew and Keegan Kang

5 Our Estimator: Discrete Hashes

Unlike the MLE approach for discrete hashes where we define a new collection
of sets, our estimator uses the same random variables defined in the binary case.

We find that we require the true value of pij to calculate c1 and c2. As such,
we are presented with the same two options as in the binary case. We can either
use 1

k

∑k
s A as an initial estimate for pij , or we can collect the pij terms on one

side, and solve the root for the resultant cubic. Similarly, this result is equivalent
to the cubic for discrete hashes.

Theorem 2. Suppose we set g(pA) to be the cubic found after calculus in (13)
and f(pA) to be the cubic we find after our control variate approach. We have

that f(pA)
g(pA) = −2nD − nE.

The equivalency of maximum likelihood estimation and control variates have
been explored in [4] and [17], where they show how solving the “constrained
Monte Carlo” with non-parametric maximum likelihood estimation coincides
with the method of control variates. This implies that the variance reduction for
our control variate method is asymptotically equivalent to the variance reduction
for maximum likelihood estimation method [11].

However, the control variate method allows us to substitute in a proxy for
pij in our coefficients c1, c2 (or even compute the empirical covariance), rather
than resorting than solving for a root of a cubic. This is less computationally
costly than running Newton-Raphson. Moreover, Theorem 2 gives some (theo-
retical) insight why a naive implementation of the MLE estimator may not be
numerically stable at low values of k, due to the values of nD and nE , which
may be zero for small k.

6 Application to Sign Random Projections

We demonstrate how our estimator can be used for sign random projections
(SRP). In SRP, we want an estimate for the angle θij between any two vectors
~xi and ~xj [5]. Given a data matrix Xn×p, we generate a random matrix Rp×k
with entries i.i.d from N(0, 1). We next compute V = sgn(XR) where we define

sgn(x) = 1{x≥0}. The estimate of θij is given by θ̂ =
∑k
s=1

π
k · 1{Vis 6=Vjs}.

Suppose we now generate an extra vector ~e, similar to [11]. Then we only
need to make minor modifications to our estimator to have it calculate estimates
for the angles between two vectors. Specifically, we have E[A] = 1− θij

π ,E[B] =

1− θie
π , and E[C] = 1− θje

π .
Computing E[AB] = E[AC] = E[BC] involves finding the “three-way” prob-

ability of A, B, and C. In the case of estimating angles, this is equivalent to
having the three vectors ~xi, ~xj , and ~e fall on one side of some hyperplane. This

probability is given by 1− θij+θie+θje
2π , with the proof given in [11].

In general, in order to obtain estimates for any LSH scheme, we need to first
obtain an expression for the “three-way” probability of A, B, and C. In other
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words, we need to be able to calculate an expression for the expectation of the
statistic 1{Yis=Yjs=Yes}. We discuss more on these in Section 8.

With the above modifications, our estimator is able to directly output an
estimate of the angle between any two vectors.

7 Experimental Results

We demonstrate our estimators by using the MNIST test dataset [12] and the
Gisette dataset [7,14]. The MNIST test dataset has n = 10, 000 observations
with p = 784 parameters. The Gisette dataset has n = 13, 500 observations
with p = 5000 parameters. We normalise the vectors in both datasets to unit
length. To ensure reproducibility, we use a constant seed for our experiments.
Furthermore, we set the extra vector ~e to be the mean vector across all observa-
tions in each dataset. The simulations are written in Python, and make use of
GPU-accelerated computations through the library PyTorch.

In order to prevent possible biases in picking “good pairs” of vectors, we
choose to calculate all possible pairwise estimates for the full dataset. We then
calculate the mean-squared error between each estimate and the actual value.

We vary k over the range of {10, 20, . . . , 100}, and for k, we calculate and
average the results over 100 iterations. For each individual simulation run, we
calculate 4 different estimates, namely CV_SUB, CV_CUBIC, MLE, and SRP. Re-
spectively, they refer to: using an initial estimate for the default control variate
procedure, solving the cubic derived from control variates, solving the cubic
derived from MLEs [11], and sign random projections [5].

We compute the average of all mean-squared errors of 49, 995, 000 pairwise
angular similarity estimates for the MNIST test dataset, as well as the average
mean-squared errors of 91, 118, 250 pairwise angular similarity estimates for the
Gisette dataset. These are displayed in Figures 2 and 3 respectively.

Fig. 2. Averaged MSE for MNIST test
dataset

Fig. 3. Averaged MSE for Gisette
dataset

In general, we note that CV_SUB and CV_CUBIC both consistently outperform
SRP and MLE. Furthermore, we also note that CV_SUB, that is, simply improv-
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ing an initial estimate using control variates, outperforms solving the cubic in
CV_CUBIC. Finally, although CV_CUBIC and MLE have been shown to be equiv-
alent in the previous sections, empirical results show that the control variates
approach offers greater stability and accuracy compared to the MLE approach.

This is because the calculation for MLE relies on nA, nB , nC , nD. If any of
them are zero due to few observations, this may result in a division-by-zero
error. Cross-multiplying can help prevent this error, but the numerical stability
would still be affected. On the other hand, CV_SUB uses the empirical value of the
control variate coefficient c. This takes the correlation of the already observed
vectors into account, thus giving more accurate and stable results.

We also plot the standard deviation of the mean-squared errors in Figures 4
and 5. We note that CV_SUB tends to have lower standard deviations compared
to other estimates. We also note that for larger values of k, we can observe lower
variances and higher accuracies compared to the baseline of SRP.

Fig. 4. Standard deviations for MNIST
test dataset

Fig. 5. Standard deviations for Gisette
dataset

We also run another set of simulations for a wider range of k = {200, 250, . . . 1000},
to show the asymptotic behaviour of the estimators for larger values of k. This
time, the results are obtained by averaging over 25 iterations. Again, we cal-
culate these values from all possible pairs of vectors in both the MNIST and
Gisette dataset. The results are graphed and displayed in Figures 6 and 7 for
the MNIST and Gisette dataset respectively.

Table 1. Average MSE for k = 50 and k = 1000

MNIST (k = 50) Gisette (k = 50) MNIST (k = 1000) Gisette (k = 1000)

SRP 0.0448± 0.0153 0.0477± 0.00867 0.00216± 0.000381 0.002400± 0.000498

MLE 0.195± 0.222 0.195± 0.159 0.00165± 0.000205 0.00192± 0.000107

CV_SUB 0.0324± 0.00731 0.0372± 0.00578 0.00163± 0.000180 0.00192± 0.000119

CV_CUBIC 0.0345± 0.00974 0.0393± 0.00621 0.00164± 0.00974 0.00192± 0.000107
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We observe that MLE only outperforms SRP for larger values of k, but does not
match the performance of control variate. We also observe that as k increases,
MLE asymptotically approaches the same performance as CV_CUBIC. This verifies
the equivalency of the two approaches as proven in Theorems 1 and 2. Table 1

Fig. 6. Averaged MSE for MNIST test
dataset

Fig. 7. Averaged MSE for Gisette
dataset

displays the averaged MSE (with bounds of 3 standard deviations) for k = 50
and k = 1000 for both the MNIST and Gisette datasets. We can see that for both
datasets, the MSE for MLE and CV_CUBIC are approximately equal at k = 1000,
verifying that our two methods are asymptotically identical.

We note that although large values of k give higher accuracies, it does not
make sense to use values of k which are similar in magnitude to the original
dimensions of the data, p. This is because the computational complexities of our
estimators are in the order of O(n2k), while the computational complexity of
calculating each pairwise angle is O(n2p). Using larger values of k would result
in a slower running time, due to the additional overhead of preprocessing the
hash values. In this sense, we are only interested in the results for small values
of k, but nevertheless, our CV approach still matches/outperforms the MLE
approach even for large k.

To verify this, we display the average running time of the various algorithms
for k = {50, 500, 1000} on the MNIST dataset in Table 2. As expected, for small
k, all estimators are faster than directly calculating the angles, but this changes
as k increases. We note that SRP is the fastest, with our estimator, CV_SUB coming
in close second. There is a tradeoff between accuracy and efficiency, but because
both algorithms keep to the same order of complexity, the time tradeoff is not
too significant. On the other hand, due to the need to numerically solve a cubic
(through Newton-Raphson), CV_CUBIC and MLE have a much more noticeable
accuracy-efficiency tradeoff. Overall, our results shows that our control variate
estimator, not only offers an increase in accuracy from the baseline of SRP, but
also consistently outperforms the MLE approach proposed by [11].
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Table 2. Average time taken (in seconds) for k = {50, 500, 1000} on MNIST dataset

k = 50 k = 500 k = 1000

Direct Calculation 135.3

SRP 11.28 138.4 287.4

MLE 99.05 881.5 1805

CV_SUB 15.20 146.7 294.9

CV_CUBIC 47.38 181.1 335.3

8 Discussion on Control Variates

An added benefit of using control variates is the ability to easily extend to include
additional extra vectors. For example, we can generate further extra vectors
~e1, ~e2, . . . ~ej , which can also be used to obtain even more accurate estimates.

For each extra vector et, we first pre-compute and store ρ(~xi, ~et) for all ob-
servations. Then we have the following random variables for each extra vector:

A :=

∑
s 1{Yis=Yjs}

k
Bt :=

∑
s 1{Yis=Yets}

k
Ct :=

∑
s 1{Yjs=Yets}

k
(28)

We can disregard the additional random variables of the form 1{Yems=Yens}
because their covariance with A is 0. In general, for any two random variables
to have a non-zero covariance, they must share at least one vector in common.
Because we are interested in reducing the variance of A, any random variable
we consider should at least share a common vector with A.

Thus, we can define the new estimator of A′ of pij as follows:

A′ = A+

j∑
t=0

ct,1(Bt − E[Bt]) + ct,2(Ct − E[Ct]) (29)

Minimising Var(A′), we obtain the following system of equations for ~c:[
c1,1 c1,2 . . . cj,1 cj,2

]T
= Σ−1ΣA (30)

where Σ refers to the covariance matrix of the random vector X whose elements
are (B1, C1, . . . Bj , Cj)

T , and ΣA refers to the column vector whose elements are
the covariances of X with respect to A.

In order to solve the system of equations above, we would need the covariance
matrices. Since Cov(X,Y ) = E[XY ]−E[X]E[Y ], and we already have E[X] and
E[Y ], we would only need to find expressions for E[XY ].

Now, Bt and Ct are random variables that relate how two vectors are similar
to one another. Thus, the expectation E[BiCj ] for any i, j rely on which vectors
are being referred to. If they share a common vector, such that the three vectors
in question are ~x, ~y and ~z, then the product becomes finding the expectation of
the random variable 1{Yxs=Yys=Yzs}. This is the “three-way” similarity between
the three vectors. For sign random projections, this is the probability that the
three vectors lie on the same side of a hyperplane.
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If the random variables do not share any common vectors, e.g. B1 and C2,
then, their covariance would equal to 0. This would mean that in the covari-
ance matrix Σ above, there are several entries which we would know to be 0.
This makes our covariance matrix sparse, and hence computationally easier to
compute the control variate coefficients.

We give an example of the covariance matrix Σ for j = 4 extra vectors:

B1 C1 B2 C2 B3 C3 B4 C4



B1 v c c 0 c 0 c 0
C1 c v 0 c 0 c 0 c

B2 c 0 v c c 0 c 0
C2 0 c c v 0 c 0 c

B3 c 0 c 0 v c c 0
C3 0 c 0 c c v 0 c

B4 c 0 c 0 c 0 v c
C4 0 c 0 c 0 c c v

(31)

where v, c are the respective variances and covariances to be calculated.

9 Conclusion

We have shown how to use control variates to construct estimators for similarity
estimation under LSH schemes. We have also demonstrated how our estimator
could be used for sign random projections. The empirical results also show that
our control variates estimator outperforms other estimators that use extra vec-
tors to improve accuracy. Furthermore, we have shown how our estimator can
easily be extended to include greater numbers of extra vectors, which would
otherwise require redefining of contingency tables in other approaches.

We believe that this strategy of using control variates can help improve esti-
mates of vector similarities. The stability and accuracy at even low values of k
is an added improvement over other similar approaches. Hence, we believe that
our framework of using control variates to achieve variance reduction could be
beneficial when both fast computation and high accuracy is wanted.
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